pygwb.pe.GWBModel
- class pygwb.pe.GWBModel(baselines=None, model_name=None, polarizations=None)[source]
Bases:
Likelihood
Generic model, contains the definition of likelihood:
\[p(\hat{C}^{IJ}(f_k) | \mathbf{\Theta}) \propto\exp\left[ -\frac{1}{2} \sum_{IJ}^N \sum_k \left(\frac{\hat{C}^{IJ}(f_k) - \Omega_{\rm M}(f_k|\mathbf{\Theta})}{\sigma_{IJ}(f_k)}\right)^2 \right],\]where \(\Omega_{\rm M}(f_k|\mathbf{\Theta})\) is the model being fit to data, and \(\mathbf{\Theta}\) are the model’s parameters.
The noise likelihood is given by setting \(\Omega_{\rm M}(f_k|\mathbf{\Theta})=0\).
- __init__(baselines=None, model_name=None, polarizations=None)[source]
See also
bilby.Likelihood
More information here.
- __call__(*args, **kwargs)
Call self as a function.
Methods
__init__
([baselines, model_name, polarizations])Function for evaluating log likelihood of detector network.
log_likelihood_IJ
(baseline, freq_mask[, noise])Function for evaluating log likelihood of IJ baseline pair.
Difference between log likelihood and noise log likelihood
Function for evaluating model.
Function for evaluating noise log likelihood of detector network.
Parameters to be inferred from the data.
Attributes
marginalized_parameters
meta_data
- log_likelihood_IJ(baseline, freq_mask, noise=False)[source]
Function for evaluating log likelihood of IJ baseline pair.
- Parameters:
baseline (
pygwb.Baseline
) – Baseline for which to run parameter estimation on.noise (
bool
, optional) – Parameter to indicate whether the likelihood should be evaluated assuming the signal model, or assuming only noise is present in the data.
- Returns:
- logL_IJ:
float
Log likelihood value for the IJ baseline pair.
- logL_IJ:
- log_likelihood_ratio()
Difference between log likelihood and noise log likelihood
- Returns:
- float